Напитки

Жаркое из гуся с нектариновой пастой. Гусь в духовке с картошкой – король на праздничном столе! Как можно приготовить гуся в духовке с картошкой целиком и кусочками. Гусь в духовке с картошкой – общие принципы приготовления

Жаркое из гуся с нектариновой пастой. Гусь в духовке с картошкой – король на праздничном столе! Как можно приготовить гуся в духовке с картошкой целиком и кусочками. Гусь в духовке с картошкой – общие принципы приготовления

Поршень двигателя служит для преобразования химической реакции топлива в механическую работу коленчатого вала. Он работает в условиях высокой температуры и давления, поэтому изготавливается из особо прочных материалов, способных длительное время выдерживать подобное агрессивное воздействие, не изменяя свои характеристики.

Как устроен поршень

Внешне поршень представляет собой цилиндр, состоящий из таких элементов, как:

Уплотнительный пояс;

Бобышки;

Стальная терморегулирующая вставка.

Днище

Эта часть поршня берет на себя основную тепловую нагрузку и поэтому имеет достаточно большую толщину. Чем толще днище, тем меньше его температурный нагрев, но большая масса самого поршня. Обычно толщина днища составляет порядка 7-9 мм, для моторов с наддувом 11 мм, дизеля 10-16 мм. Хотя, например, на моделях Honda толщина днища поршней составляет 5.5-6 мм.

На некоторых видах поршней днище и первую канавку под компрессионное кольцо, для износостойкости, покрывают слоем чугуна, а также применяется твердое анодирование- преобразование тонкого слоя алюминия в керамику (0.008-0.012 мм). Покрытие упрочняет днище поршня, уменьшая риск перегрева и прогорания.

Уплотнительный пояс

Часть поршня, где выполнены канавки под поршневые кольца.

Бобышки

Служат для установки поршневого пальца в поршень. На ряде поршней бобышки могут иметь ребра, получающиеся в результате их подреза к середине поршня, так называемые «холодильники», для равномерного распределения теплового потока. Поршня с «холодильниками» обладают повышенной прочностью и жесткостью, что актуально для высоко оборотистых моторов, особенно с наддувом.

Юбка

Направляющая часть поршня, служащая для выравнивания боковых усилий при перекладке поршня в верхней и нижней мертвой точке. В современных поршнях юбка имеет небольшое сужение к нижней части, как и уплотнительный пояс, такие поршня имеют форму бочки.

Терморегулирующая вставка

Расположена внутри юбки и при нагревании срабатывает как биметалл на разнице коэффициентов расширения стали и алюминия, препятствует большому расширению юбки поршня.

Материал поршней

Поршни всех современных серийных моторов авто выполнены из сплава алюминия. Ранее на моторах устанавливались чугунные поршня (серый и ковкий чугун), которые впоследствии были вытеснены поршнями, выполненными из сплава алюминия с кремнием, доля которого составляла порядка 12% -13%. Поршня отливались в специальной форме – кокиль.

Нахождение кремния в сплаве дало возможность снизить износ поршней, а также уменьшить линейное расширение, что позволило сократить тепловой зазор поршня в цилиндре.

По мере роста форсированности двигателей, заметно повысились требования к надежности поршней, и доля кремния в алюминиевом сплаве была повышена и поднялась до 18% и выше, особенно это стало важно для дизелей и моторах с наддувом. Такие поршня изготавливаются методом штамповки.

Для сокращения время притирки к цилиндру на тело поршня наносится лужение из легкоплавких металлов, таких как олово, свинец или оловянно свинцовый сплав (толщина 0.005- 0.002 мм).

В последнее время появились также поршня из жаропрочных сталей, на уровне разработки и частичного применения. Стальные поршня имеют меньшую массу, при прочности самой конструкции. Меньший вес достигается более тонкой толщиной юбки и меньшей высоты от днища до оси пальца.

Благодаря меньшей высоте поршня при обычной высоте блока, появляется возможность установить удлиненные шатуны, что снижает боковые нагрузки в паре трения поршень-шатун.
Однако такие поршни имеют ряд недостатков. Это более дорогая себестоимость обработки и повышенный износ зеркала цилиндров.

Принцип работы

При вспышке смеси в камере сгорания возникает высокая температура порядка 1800-2000 градусов, выделяемая при этом энергия создает большое давление на головку поршня, заставляя его двигаться вниз по телу цилиндра.

Поршень через шатун, возвратно-поступательным движением, передает усилие на шейку коленчатого вала, заставляя последний вращаться.

Неисправности поршней

Оплавление или прогар днища;

Трещины перегородок между канавками;

Износ канавок (большой зазор между канавкой и кольцом);

Трещины или деформация в теле поршня;

Ресурс

Этот показатель зависит от различных факторов и может составлять 200-250-300 тыс. км для отечественных двигателей и 500-600 тыс. километров и более для иномарок.

Так, не своевременная смена масла, фильтра вызывают залегание колец в канавках поршня, резко ухудшая его охлаждение, как следствие перегрев поршня и появление на его теле задиров.

Ресурс поршня сокращают такие неисправности, как выработка отверстия в бобышках под палец шатуна, а также изношенные , когда их высота уменьшается и они начинают разбивать канавки поршня.

Чаще всего проблемы с поршнями вызваны двигателя, из-за отказа термостата, помпы или разгерметизации системы охлаждения, а также при неисправности вентилятора охлаждения радиатора, самого радиатора или его датчика.

Как продлить жизнь поршням

Для того, чтобы поршня выходили свой ресурс, рекомендуется использовать только масло, предписанное производителем, заменять его строго по регламенту. По возможности не доезжать километраж до предписанного пробега одну две тысячи и заменять масло. Использовать рекомендованное производителем топливо. двигатель перед поездкой, особенно в зимнее время. Следить за режимом двигателя, не допуская его перегрева.

1875 Просмотров

Двигатель любой современной машины характеризуется высокой сложностью конструкции и большим числом составных элементов. Несмотря на такую высокую сложность, основывается на базовых понятиях, которые актуальны для машины любого класса и года выпуска. В этой статье мы рассмотрим один из ключевых элементов - поршень двигателя внутреннего сгорания - и расскажем о том, для чего он нужен и из чего состоит.

Строение

Поршень 4-тактного двигателя имеет достаточно сложное строение и, таким образом, целиком устройство включает в себя несколько составных частей. Это позволяет придавать машине оптимальные технические характеристики, а также делать 4-тактный двигатель более устойчивым к нагрузкам, а значит, долговечным.

Основная часть, из которой состоит поршень четырехтактного ДВС, - это его днище. Днище по своему диаметру чуть меньше, чем диаметр цилиндра, что объясняется наличием компрессионных и маслосъемных колец. Днище поршня любого диаметра может иметь разную форму и описание. Так, оно может иметь вогнутую форму, а само углубление может обладать различной конфигурацией.

Основное назначение днища в устройстве поршня в конструкции - это взаимодействие с топливными парами, которые при сгорании толкают поршень и заставляют его быть в движении на протяжении всего периода работы. Форма днища в поршне 4-тактного мотора диктуется большим количеством факторов. Обычно это зависит от количества свечей, мощности, диаметра самого поршня и многих других нюансов.

Помимо днища, в поршне, сколько бы миллиметров он ни насчитывал в диаметре, обязательно присутствует уплотнительная часть, которая включает в себя такие устройства, как компрессионные и маслосъемные кольца. Компрессионные кольца вкладываются в специальные выточенные желобки, которые по своему диаметру чуть отличаются от диаметра головки поршня. Их задача - не позволять смешиваться отработанной и свежей смеси, а также сохранять давление во время горения топлива.

В чем же заключается назначение компрессионных колец? Компрессионные 4-тактного двигателя необходимы для того, чтобы эффективность работы мотора была максимальной, и вся энергия сгоревшего топлива была направлена на то, чтобы поршень перемещался. По этой причине к материалам, из которых изготавливаются такие кольца в четырехтактном двигателе, предъявляются серьезные и строгие требования.

Помимо компрессионных, поршень 4-тактного двигателя в обязательном порядке оборудуется такими конструкциями, как кольца маслосъемные, которые обладают чуть большим диаметром, чем сам поршень. Они необходимы для того, чтобы смазка, которая постоянно циркулирует в моторе для предотвращения трения и перегрева, оставалась на трущихся поверхностях в нужном количестве и не накапливалась в камере сгорания. Благодаря этому, удается избежать масляного нагара, а расход смазки резко сокращается.

Как это работает?

Ход поршня четырехтактного двигателя представляет собой цикл, в течение которого коленчатый вал двигателя совершает один полный оборот. За это время топливная смесь, которая поставляется карбюратором или инжектором, полностью сгорает и выводится в , где проходит через глушитель и рассеивается в окружающую среду.

Ход поршня характеризуется исключительно движением вверх и вниз. Такое положение дел касается и четырехтактных, и всех остальных разновидностей моторов. Как уже было сказано, поступательное движение обуславливается исключительно процессами горения, которые протекают при высокой температуре.

Когда ход поршня производится в вертикальном направлении, коленчатый вал, с которым он соединяется, совершает вращательное движение. По этой причине конструкторами и инженерами был введен кривошип, который позволяет приводить вал в движение и заставлять его вращать колеса все время, пока четырехтактный двигатель запущен.

Обычно кривошип связан с головкой поршня шарнирно: ход поршня достаточно свободен для того, чтобы кривошип смещался на острый угол относительно оси симметрии и был в движении беспрестанно. Шатун представляет собой небольшой металлический стержень, который на двух концах оборудован вставками под шарнир. С одной стороны шатун движется относительно поршня, который движется вверх и вниз.

С противоположного конца шатун подвижно закрепляется к коленчатому валу. Между шатуном и валом располагаются так называемые вкладыши, устройство которых позволяет переносить высокие температуры и не истираться даже при пиковых нагрузках. Когда настает пора ремонта, вкладыши меняются на новые, и таких циклов обслуживания до замены коленчатого вала может быть несколько.

Материал изготовления

Поршень 4-тактного двигателя, а вернее, материал, из которого он изготовлен, должен отвечать большому числу требований. К примеру, материал должен быть устойчивым к серьезным перегрузкам по температуре, ведь горение топлива вызывает сильнейший перегрев, к которому не готово большинство существующих материалов.

Кроме того, такие материалы должны обладать невысокой плотностью. Это нужно для максимального облегчения поршня с целью снижения нагрузки на детали и суммарного расхода топлива.

Какие же материалы отвечают подобным требованиям и широко применяются на четырехтактных двигателях внутреннего сгорания? Самым распространенным таким материалом является чугун. Будучи относительно недорогим, он отлично справляется со всеми своими задачами и выдерживает высокие температуры. Как показывает практика, ресурс такой детали достаточно высок, а надежность отвечает всем предъявляемым требованиям, поэтому поршень из чугуна можно найти на большинстве автомобилей.

Тем не менее прогресс не стоит на месте, и на смену чугуну пришел алюминий, а вернее, его специальная разновидность. Преимущество такого материала в том, что он ощутимо легче, однако по прочности ничуть не уступает привычному чугуну. По этой причине на спортивные машины в четырехтактные моторы ставят именно алюминиевые поршни. Такое решение позволило повысить мощность, увеличить ресурс и снизить расход топлива. Стоит отметить, что на обычные гражданские машины поршни из алюминия устанавливаются также нередко, что говорит об их очевидных преимуществах.

Резюме

Поршень двигателя - это важная деталь, без которой нормальная работа мотора оказалась бы невозможной. В связи с этим мировые автопроизводители стараются приблизить существующие решения к совершенству. Это позволяет добиться лучших характеристик при более высоком ресурсе, что говорит о том, что прогресс не стоит на месте.

1. Перечислите элементы поршня и объясните их назначение, объясните условия работы поршня.

В конструкции поршня принято выделять следующие элементы:

головку 1 и юбку 2. Головка включает днище З, огневой (жаровой) 4 и

уплотняющий 5 пояса. Юбка поршня состоит из бобышек б и направляющей части.

Сложная конфигурация поршня, быстро меняющиеся по величине и направлению тепловые потоки, воздействующие на его элементы, приводят к неравномерному распределению температур по его объему и, как следствие, к значительным переменным по времени локальным термическим напряжениям и деформациям

Теплота, подводимая к поршню через его головку, контактирующую с рабочем телом в цилиндре двигателя, отводится в систему охлаждения через отдельные его элементы в следующем соотношении, %: в охлаждаемую стенку цилиндра через компрессионные кольца - 60...70, через юбку поршня - 20...30, в систему смазки через внутреннюю поверхность днища поршня - 5...10. Поршень также воспринимает часть теплоты, выделяющейся в результате трения цилиндра и поршневой группы.

Основные элементы конструкции поршня

    Канавка под первое компрессионное кольцо

    Канавка под второе компрессионное кольцо

    Межкольцевые перемычки

    Канавка под маслосъемное кольцо

    Выборка для слива масла

    "Холодильник"

    Юбка поршня

    Бобышка под пальцевое отверстие

    Разгружающая выборка

    Канавка для стопорного кольца

    Отверстие под палец

    Юбка поршня

    Головка поршня

    Нирезистовая вставка

    Маслоохлаждаемая полость

    Камера сгорания

    Конусный вытеснитель

    Днище поршня

Поршень - одна из важнейших деталей двигателя внутреннего сгорания. Он передает энергию сгорания топлива через палец и шатун коленчатому валу. Он вместе с кольцами уплотняет цилиндр от попадания продуктов сгорания в картер. Во время работы на поршень действуют высокие механические и тепловые нагрузки.

Максимальное давление в цилиндре, возникающее при сгорании топливно-воздушной смеси, может достигать 65-80 бар в бензиновом двигателе и 80-160 бар в дизеле. Это эквивалентно силе в несколько тонн, действующей на поршень двигателя легкового автомобиля и в десятки тонн - на поршень тяжелого дизеля.

Во время работы поршень совершает возвратно-поступательное движение, периодически ускоряясь до скорости более 100 км/час, а затем замедляясь до нуля. Такой цикл происходит с удвоенной частотой вращения коленвала, т.е. при 6000 об/мин цикл ускорение-замедление происходит с частотой 200 Гц.

Максимальная величина ускорений, приходящаяся на верхнюю и нижнюю мертвые точки, может достигать 15000-20000 м/с 2 , что соответствует перегрузке 1500-2000g. Космонавт при выводе ракеты в космос кратковременно испытывает перегрузки в 150 раз меньше. От действия ускорений возникают инерционные силы по величине соизмеримые с теми, что действуют от давления при сгорании.

Сгорание топливовоздушной смеси происходит при температуре 1800-2600°С. Эта температура значительно превышает температуру плавления поршневого сплава на основе алюминия (~700°С). Чтобы не расплавиться, поршень должен эффективно охлаждаться, передавая тепло от камеры сгорания через кольца, юбку, стенки цилиндра, палец и внутреннюю поверхность охлаждающей жидкости и маслу. При нагревании поршня происходит снижение предела прочности материала, возникают термонапряжения от перепадов температуры по его телу, которые накладываются на напряжения от сил давления газов и инерционных сил. Таким образом, условия работы поршня можно определить как очень сложные.

Чтобы поршень противостоял этим воздействиям, он должен быть легким, прочным, износостойким, хорошо проводить тепло. Все перечисленные условия должны быть учтены при проектировании. Форма внутренних поверхностей и конструктивных элементов поршня должна обеспечивать заданную прочность и работоспособность за счет рационального распределения и использования материала.

Особое внимание уделено форме наружной поверхности. Внешний профиль боковой поверхности поршня формируется с учетом деформаций от механических нагружений (давления газов и инерционных сил) и теплового воздействия от сгорания топливовоздушной смеси таким образом, чтобы ни при каких условиях не произошло заклинивание в цилиндре, прорыв горячих газов в картер, прогорание камеры сгорания.

Температура поршня в зоне камеры сгорания (на днище) выше, чем на юбке, температурное расширение головки больше чем юбки, поэтому поршень в холодном состоянии – бочкообразный, с уменьшением диаметра от юбки к головке.

Сила давления газов, силы инерции и боковая сила деформируют поршень так, что юбка овализируется. Для компенсации этой деформации поршень изначально выполняется с «противоэллипсом», большая ось которого расположена в перпендикулярно оси пальцевого отверстия.

Зазоры между поршнем и цилиндром должны быть сведены к минимуму для предотвращения шума, особенно в холодном двигателе. Но они должны быть достаточными для предотвращения заклинивания при работе прогретого двигателя.

Бочкообразная и овальная форма внешней поверхности кроме компенсации соответствующих деформаций от силового и теплового воздействия обеспечивает образование масляной пленки между поршнем и цилиндром (гидродинамическая смазка)

Конструктивные особенности поршня

Подробности, связанные с конструктивными элементами поршней, позволят глубже понять сложность задач, стоящих перед производителями.

Головка поршня - это его верхняя часть, которая включает днище и зону канавок под поршневые кольца. Вместе с головкой цилиндра днище поршня образует камеру сгорания. Камера сгорания может быть выполнена и в головке. На днище действуют давление газов и тепло от сгорания топлива. Головка поршня должна:

Обеспечивать хорошее смесеобразование и полноту сгорания топлива;

Сохранять прочность при высокой температуре;

Обеспечивать отвод тепла от днища;

Передавать усилие на поршневой палец и шатун через бобышки;

Обеспечивать заданный ресурс по износу канавок под поршневые кольца.

В дизельных двигателях с непосредственным впрыском камера сгорания, как правило, выполняется в поршне и оказывает большое влияние на процессы смесеобразования и горения.

В дизельных двигателях с предкамерным впрыскиванием и бензиновых двигателях днище поршня плоское или имеет небольшие выборки.

Головка алюминиевых поршней может быть анодирована (нанесено защитное окисное покрытие). В дизельных двигателях камера сгорания может быть упрочнена путем армирования металлокерамическим волокном в процессе литья под давлением.

Канавки под поршневые кольца располагаются на боковой поверхности головки поршня. Обычно их три: две под компрессионные и одна под маслосъемное кольца. Поршневые кольца образуют уплотнение между поршнем и стенкой цилиндра, не допуская прорыва горячих газов в картер и масла в камеру сгорания.

Перемычки между канавками (особенно между первой и второй для компрессионных колец) подвергаются высоким механическим и тепловым нагрузкам - 50-60% тепла отводится в цилиндр через компрессионные кольца.

Неравномерный нагрев и тепловое расширение головки может привести к нарушению формы канавок. Это отрицательно влияет на расход масла и вызывает износ стенки цилиндра и самой канавки. Для устранения этого явления кольцевые канавки выполняются под небольшим углом так, чтобы наружные кромки были выше внутренних. Это препятствует появлению нежелательного наклона поперечного сечения канавки вниз на рабочих режимах.

К канавкам верхних компрессионных колец предъявляются особо жесткие требования, в особенности в дизельных двигателях с высокой степенью сжатия. Для упрочнения эти канавки часто армируются специальными вставками, изготовленными из нирезиста (легированный никелем чугун), или зона канавки упрочняется путем плазменного переплава с присадкой легирующих компонентов. Эти мероприятия повышают износостойкость и снижают шум в дизельном двигателе.

Имеются наиболее распространенные типы вставок с параллельными сторонами и вставки с конусообразными сторонами. Существуют нирезистовые вставки с одной канавкой или, в некоторых высокофорсированных дизельных двигателях, с двумя канавками под компрессионные кольца. Иногда к нижней торцевой поверхности канавки первого компрессионного кольца прикрепляется полоска из нержавеющей стали, выполняющая ту же функцию, что и нирезистовая вставка.

Через поршневой палец в процессе работы передаются значительные переменные усилия и тепловые потоки. Поэтому поверхности пальцевых отверстий в поршне должны быть обработаны с высокой точностью, при этом шероховатость поверхности может достигать 0,1 мкм. Для снижения напряжений на кромках бобышек и в пальце с внутренней стороны отверстий иногда выполняется конус с небольшим углом (менее 1 градуса).

Важным конструктивным приемом для снижения шума, возникающего при перекладке поршня вблизи верхней мертвой точки, является смещение пальцевого отверстия от оси поршня в направлении той стороны юбки поршня, которая воспринимает боковую силу при рабочем ходе. В этом случае на поршень обязательно наносится метка для правильной установки в двигатель.

Покрытия

Для улучшения работы поршней в двигателе их поверхность часто подвергается различным видам обработки, в частности, на нее наносятся покрытия. Эти покрытия выполняют две главные функции:

Улучшение приработки поршня. Обычно их наносят на юбку, и они изнашиваются через определенное время на этапе обкатки двигателя;

Улучшение механических свойств поверхности поршня (твердость, износостойкость). Некоторые покрытия остаются на поршне на все время эксплуатации, предотвращая эрозию, растрескивание и улучшая антифрикционные свойства.

Головка поршня дизельных двигателей иногда подвергается анодированию (покрывается окисью алюминия) для уменьшения температуры основного материала и опасности растрескивания головки, вызываемого высокими термическими нагрузками при работе.

2.Устройство и принцип работы ТНВД распределительного типа.

Такой насос применяется для 3, 4, 5 и 6 цилиндровых дизельных двигателей легковых автомобилей, тракторов и грузовых автомобилей мощностью до 20 кВт на цилиндр. Насосы распределительного типа для двигателей с непосредственным впрыском обеспечивают давление до 700 бар при частоте вращения до 2400 мин-1.

Топливоподкачивающий насос
Этот насос лопастного типа служит для подачи топлива из бака и вместе с нагнетательным регулирующим клапаном создает давление, которое возрастает прямо пропорционально частоте вращения коленчатого вала двигателя.

Насос высокого давления
Насос распределительного типа включает только один плунжерновтулочный комплект для питания всех цилиндров.поршня . Именно поэтому система и называется...

  • Трубопроводный транспорт и переработка продукции морских скважин

    Книга >> География

    Хорошем рабочем состоянии. Такие элементы поршней , как чашки, диски, ... разделительные) элементы . Как химическая, так и механическая (с помощью поршней ) обработка... предусмотреть техническое обслуживание их изнашиваемых элементов . 4.8 Очистные устройства с...

  • Унифицированные базы и конструктивные элементы поршневых компрессоров

    Контрольная работа >> Промышленность, производство

    Основных базовых элементов поршневые компрессоры имеют поршни с поршневыми... необходимо ознакомиться с вышеперечисленными элементами , их назначением, ... элементам компрессора, как: - рамы и станины; - валы; - шатуны; - крейцкопфы; - штоки; - поршни ...

  • Расчет параметров рабочего процесса и выбор элементов конструкции тепловозного дизеля

    Учебное пособие >> Транспорт

    РАБОЧЕГО ПРОЦЕССА И ВЫБОР ЭЛЕМЕНТОВ КОНСТРУКЦИИ ТЕПЛОВОЗНОГО ДИЗЕЛЯ Методические... главные размеры поршня , шатуна, коленчатого вала, рассчитать основные элементы узла, ... представленных в табл.7. Таблица 7. Элементы конструкции Материал вала коленчатого вала...

  • Поршень - деталь поршневой группы двигателя, находящаяся внутри цилиндра. При помощи шатуна поршень соединен с коленчатым валом. Конструкция спроектирована таким образом, что поршень во время работы двигателя постоянно совершает возвратно-поступательное движение, преобразуя энергию расширяющихся при сгорании газов во вращение коленчатого вала.

    Устройство поршня

    Поршень состоит из трех частей, хотя и выполняется из единой заготовки: днища, уплотняющей части и юбки. К поршень присоединяется при помощи шатуна. Поршень надевается на шатун и , продетым сквозь деталь. Форма днища поршня двигателя внутреннего сгорания никогда не бывает плоской. В зависимости от конструкции днище может иметь сложную конфигурацию. Сверху над днищем могут быть расположены свечи, форсунки и клапаны.

    Расстояние от днища поршня до первого компрессионного кольца называется огневым поясом поршня

    Чаще всего в днище поршня можно видеть углубления, предназначенные для того, чтобы не соприкасались с поверхностью поршня. Углубления, как правило, имеют большую глубину с одного края, так как расположенные над ними клапаны установлены под углом. В целом, как правило, общую форму днища делают вогнутой. Это обусловлено тем, что поршень, поднимаясь вверх, является одновременно , а для оптимального распространения пламени вогнутое днище подходит как нельзя лучше. У этой формы есть и свои недостатки - в нижней части впадины быстрее отлагается нагар.


    Расстояние от днища поршня до первого компрессионного кольца называется огневым поясом поршня. Поскольку поршень работает в условии экстремально высоких температур, огневой пояс имеет строго просчитанную высоту, которая зависит еще и от материала, из которого выполнен поршень. Снижение высоты ниже определенного предела может привести к преждевременному прогоранию поршня.

    В прошлом поршень выполнялся из стали целиком, но в современных двигателях нередко применяются облегченные поршни из алюминиевых сплавов

    Поршень - высокоточная деталь, так как одна из его задач - служить основой для компрессионных колец, уплотняющих камеру сгорания в момент сжатия. Со временем поршень изнашивается и обгорает, что приводит к снижению уплотнения - раскаленные газы начинают просачиваться между телом поршня и кольцом, и попадают в картер, а из картера в камеру сгорания просачивается масло.

    Из этого следует, что может служить признаком износа поршней. Кроме того, об этом можно судить по появлению дыма в потоке выхлопных газов - дым образуется в результате сгорания попадающего в пространство над поршнем масла.


    Сочетание днища и уплотняющей части (служащей основой для колец) называется головкой поршня. В прошлом поршень выполнялся из стали целиком, но в современных двигателях нередко применяются облегченные поршни из алюминиевых сплавов. Алюминий уступает стали в прочности, поэтому для создания основы для верхнего компрессионного кольца его снабжают ободком из обладающего высокими антикорозионными и прочностными свойствами чугуна. В чугунном ободке, вплавленном в тело поршня, нарезают канавку, в которое и вставляется . Этот вид чугуна называется нирезистом.

    В нижней части головки расположены каналы для маслосъемных колец. Их нарезают на станке и снабжают сквозными отверстиями, через которое снятое с зеркала цилиндра масло по внутренней стенке поршня стекает в поддон картера блока цилиндров.


    Юбка или направляющая часть поршня снабжена двумя приливами, или бобышками, в которых проделаны отверстия . Поскольку в месте расположения бобышек поршень имеет наибольшую толщину, в нем чаще всего возникают деформации под воздействием температуры. Для того, чтобы избежать риска деформации, часть метала с бобышек срезают на фрезеровочном станке. Служащие для охлаждения и повышающие интенсивность смазывания поршня углубления именуются на техническом сленге «холодильниками».

    Материалы для производства поршней

    К материалам, применяемым для изготовления поршней, предъявляются высокие требования. Прежде всего, материал должен обладать высокой механической прочностью при малой плотности и низком коэффициенте линейного расширения, высокой теплопроводностью и корозионной стойкостью, хорошими антифрикционными свойствами. Исходяиз этого, поршни делают либо из серого чугуна, либо из алюминиевого сплава, нередко с вкраплением чугуна.

    Чугунные поршни отличаются прочностью и износостойкостью, работают с малыми зазорами. Недостаток чугуна - большой вес. Поэтому чугунные поршни применяются, как правило, . У чугуна низкая теплопроводность, поэтому сильно нагревается днище. Это недостаток, так как высокая температура внутри камеры сгорания до зажигания может приводить к некорректному сгоранию топлива, которое называется калильным зажиганием. Особенно остро эта проблема стояла в прежние годы, когда преобладающим устройством впрыска был карбюратор.

    Гораздо чаще в современных двигателях применяются поршни из алюминиевого сплава. В числе их достоинств малый вес, высокая теплопроводность (благодаря чему температура днища редко поднимается выше 250 °C). Именно благодаря этому фактору инженерам удалось в свое время найти способ существенно поднять степень сжатия в бензиновых двигателях. Основной недостаток алюминия - большой коэффициент линейного расширения, что заставляет делать большие зазоры, снижая способность поршня к уплотнению. Кроме того, механическая прочность алюминия при нагреве резко (до 50%) падает, чего с чугуном не происходит. Тем не менее, недостатки не оказались фатальными, так как инженерам удалось придумать способы нивелировать отрицательные свойства материала. Например, чтобы уменьшить потери при сжатии, юбке поршня придают овально-конусную форму. Чтобы не допусать деформации от перегрева, юбку изолируют от головки при помощи материала с низкой теплопроводностью и тп.

    Самые "крепкие" поршни - кованые, то есть сделаные из заготовок, полученных методом литья, а впоследствии подвергнутых ковке. Ковка - механическая обработка нагретого до ковочной температуры металла. Для каждого металла существует своя ковочная температура; у алюминия она не высока - всего лишь в районе 500 градусов.

    Самые известные и широко применяемые во всем мире механические устройства — это двигатели внутреннего сгорания (далее ДВС). Ассортимент их обширен, а отличаются они рядом особенностей, например, количеством цилиндров, число которых может варьироваться от 1 до 24, используемым топливом.

    Работа поршневого двигателя внутреннего сгорания

    Одноцилиндровый ДВС можно считать самым примитивным, несбалансированными и имеющими неравномерный ход, несмотря на то, что он является отправной точкой в создании многоцилиндровых двигателей нового поколения. На сегодняшний день они применяются в авиамоделировании, в производстве сельскохозяйственных, бытовых и садовых инструментов. Для автомобилестроения массово применяются четырехцилиндровые двигатели и более солидные аппараты.

    Как функционирует и из чего состоит?

    Поршневой двигатель внутреннего сгорания имеет сложное строение и состоит из:

    • Корпуса, включающего в себя блок цилиндров, головку блока цилиндров;
    • Газораспределительного механизма;
    • Кривошипно-шатунного механизма (далее КШМ);
    • Ряда вспомогательных систем.

    КШМ является связующим звеном между энергией выделяемой при сгорании топливо-воздушной смеси (далее ТВС) в цилиндре и коленвалом, обеспечивающим движение автомобиля. Газораспределительная система отвечает за газообмен в процессе функционирования агрегата: доступ атмосферного кислорода и ТВС в двигатель, и своевременное выведение газов, образовавшихся во время горения.

    Устройство простейшего поршневого двигателя

    Вспомогательные системы представлены:

    • Впускной, обеспечивающей поступление кислорода в двигатель;
    • Топливной, представленной системой впрыска топлива ;
    • Зажигание, обеспечивающее искру и воспламенение ТВС для двигателей, работающих на бензине (дизельные двигатели отличаются самовоспламенением смеси от высокой температуры);
    • Системой смазки, обеспечивающую уменьшение трения и износа соприкасающихся металлических деталей с помощью машинного масла;
    • Системой охлаждения , которая не допускает перегрева рабочих деталей двигателя, обеспечивая циркуляцию специальных жидкостей типа тосол;
    • Выпускной системой, обеспечивающей выведение газов в соответствующий механизм, состоящей из выпускных клапанов;
    • Системой управления, обеспечивающей наблюдение за функционирование ДВС на уровне электроники.

    Основным рабочим элементом в описываемом узле считается поршень двигателя внутреннего сгорания , который и сам является сборной деталью.

    Устройство поршня ДВС

    Пошаговая схема функционирования

    Работа ДВС основывается на энергии расширяющихся газов. Они являются результатом сгорания ТВС внутри механизма. Это физический процесс принуждает поршень к движению в цилиндре. Топливом в этом случае могут служить:

    • Жидкости (бензин, ДТ);
    • Газы;
    • Монооксид углерода как результат сжигания твердого топлива .

    Работа двигателя — это непрерывный замкнутый цикл, состоящий из определенного количества тактов. Наиболее распространены ДВС двух видов, различающихся количеством тактов:

    1. Двухтактные, производящие сжатие и рабочий ход;
    2. Четырехтактные – характеризуются четырьмя одинаковыми по продолжительности этапами: впуск, сжатие, рабочий ход, и завершающий – выпуск, это свидетельствует о четырехкратном изменении положения основного рабочего элемента.

    Начало такта определяется расположением поршня непосредственно в цилиндре:

    • Верхняя мертвая точка (далее ВМТ);
    • Нижняя мертвая точка (далее НМТ).

    Изучая алгоритм работы четырехтактного образца можно досконально понять принцип работы двигателя автомобиля .

    Принцип работы двигателя автомобиля

    Впуск происходит путем прохождения из верхней мёртвой точки через всю полость цилиндра рабочего поршня с одновременным втягиванием ТВС. Основываясь на конструкционных особенностях, смешивание входящих газов может происходить:

    • В коллекторе впускной системы, это актуально, если двигатель бензиновый с распределенным или центральным впрыском;
    • В камере сгорания, если речь идет о дизельном двигателе, а также двигателе, работающем на бензине, но с непосредственным впрыском.

    Первый такт проходит с открытыми клапанами впуска газораспределительного механизма. Количество клапанов впуска и выпуска, время их пребывания в открытом положении, их размер и состояние износа являются факторами, влияющими на мощность двигателя. Поршень на начальном этапе сжатия размещён в НМТ. Впоследствии он начинает перемещаться вверх и сжимать накопившуюся ТВС до размеров, определенных камерой сгорания. Камера сгорания – это свободное пространство в цилиндре, остающееся между его верхом и поршнем в верхней мертвой точке.

    Второй такт предполагает закрытие всех клапанов двигателя. Плотность их прилегания напрямую влияет на качество сжатия ТВС и ее последующее возгорание. Также на качество сжатия ТВС оказывает большое влияние уровень износа комплектующих двигателя. Она выражается в размерах пространства между поршнем и цилиндром, в плотности прилегания клапанов. Уровень компрессии двигателя является главным фактором, оказывающим влияние на его мощность. Он измеряется специальным прибором компрессометром.

    Рабочий ход начинается когда к процессу подключается система зажигания , генерирующая искру. Поршень при этом находится в максимальной верхней позиции. Смесь взрывается, выделяются газы, создающие повышенное давление, и поршень приводится в движение. Кривошипно-шатунного механизм в свою очередь активирует вращение коленвала, обеспечивающего движение автомобиль. Все клапаны систем в это время находятся в закрытом положении.

    Выпускной такт является завершающим в рассматриваемом цикле. Все выпускные клапаны находятся в открытом положении, давая возможность двигателю «выдохнуть» продукты горения. Поршень возвращается в исходную точку и готов к началу нового цикла. Это движение способствует выведению в выпускную систему, а затем в окружающую среду, отработанных газов.

    Схема работы двигателя внутреннего сгорания , как уже говорилось выше, основана на цикличности. Рассмотрев детально, как работает поршневой двигатель , можно резюмировать, что КПД такого механизма не более 60%. Обусловлен такой процент тем, что в отдельно взятый момент рабочий такт выполняется лишь в одном цилиндре.

    Не вся энергия, полученная в это время, направлена на движение автомобиля. Часть её расходуется на поддержание в движении маховика, который по инерции обеспечивает работу автомобиля во время трех других тактов.

    Некоторое количество тепловой энергии невольно тратится на нагревание корпуса и отработанных газов. Вот почему мощность двигателя автомобиля определяется количеством цилиндров, и как следствие, так называемым объемом двигателя, рассчитанным по определенной формуле как суммарный объем всех рабочих цилиндров.